Small Business Innovation Research/Small Business Tech Transfer

Lightweight Low Force Rotary Percussive Coring Tool for Planetary Applications, Phase II

Completed Technology Project (2007 - 2009)

Project Introduction

Alliance Spacesystems, LLC produced a rotary percussive drill designed for space use under a NASA-funded Mars Instrument Development Program (MIDP) project -- the Low-force Sample Acquisition System (LSAS). The flightlike drill prototype that was the end result of the project successfully drilled and acquired 1 cm³ samples from a variety of rocks and soils including the hardest anticipated Martian rock (basalt) and frozen soil. This ability was demonstrated not only in ambient conditions but also in a thermal/vacuum chamber replicating Mars pressure and extreme temperatures. The rotary percussive approach is simple, robust, and highly efficient with regards to power and mass. During the SBIR 2006 Phase I effort, Alliance took this heritage device and expanded its potential to include coring against a variety of rock materials anticipated to be encountered on Mars. Through the use of a breadboard fixture, coring bit designs and coring parameters were evaluated to identify optimum combinations. At the completion of test a conceptual design was generated taking this coring experience into account and adding core retention, break and ejection features. A bit change mechanism, identified as a requirement for successful operation while maintaining design robustness and simplicity, was added as well. A Phase II effort is now proposed that will take this conceptual design into prototype form. Primary activities to be performed during Phase II will include: • Additional coring test runs to work out final details of detail bit design • Detail design and prototyping of core handling mechanisms • Prototype testing of core handling mechanisms • Design and manufacture of full prototype LSAS Corer system • Testing of prototype LSAS corer • Integration of LSAS corer onto robotic platform and functional demonstration

Primary U.S. Work Locations and Key Partners

Lightweight Low Force Rotary Percussive Coring Tool for Planetary Applications, Phase II

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners		
Organizational Responsibility		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Jet Propulsion Laboratory (JPL)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Lightweight Low Force Rotary Percussive Coring Tool for Planetary Applications, Phase II

Completed Technology Project (2007 - 2009)

Organizations Performing Work	Role	Туре	Location
	Lead	NASA	Pasadena,
	Organization	Center	California
Alliance	Supporting	Industry	Pasadena,
Spacesystems, LLC	Organization		California

Primary U.S. Work Locations

California

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX04 Robotic Systems
 - ☐ TX04.3 Manipulation
 - □ TX04.3.4 Sample Acquisition and Handling

